CONDITIONS IMPLYING NORMALITY AND HYPO-NORMALITY OF OPERATORS IN HILBERT SPACE

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the normality of operators

In this paper we will investigate the normality in (WN) and (Y) classes.

متن کامل

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Separating partial normality classes with weighted composition operators

In this article, we discuss measure theoretic characterizations for weighted composition operators in some operator classes on $L^{2}(Sigma)$ such as, $n$-power normal, $n$-power quasi-normal, $k$-quasi-paranormal and quasi-class$A$. Then we show that weighted composition operators can separate these classes.

متن کامل

Groups with Certain Normality Conditions

We classify two types of finite groups with certain normality conditions, namely SSN groups and groups with all noncyclic subgroups normal. These conditions are key ingredients in the study of the multiplicative Jordan decomposition problem for group rings.

متن کامل

Normality, Projective Normality and Egz Theorem

In this note, we prove that the projective normality of (P(V )/G,L), the celebrated theorem of Erdös-Ginzburg-Ziv and normality of an affine semigroup are all equivalent, where V is a finite dimensional representation of a finite cyclic group G over C and L is the descent of the line bundle O(1)⊗|G|.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Science and Arts

سال: 2020

ISSN: 2068-3049,1844-9581

DOI: 10.46939/j.sci.arts-20.4-a15